EMC of SPE Cables, Connectors & Assemblies

Bernhard Mund bda connectivity GmbH Herborner Straße 61A 35614 Asslar, Germany bernhard.mund@bda-c.com

1

2

In cooperation with Holger Brosch & Thomas Schmid, Rosenberger Hochfrequenztechnik GmbH, Fridolfing & Ralf Damm, bda connectivity GmbH, Asslar

IWCS 2022 Cable & Connectivity Industry Forum in Providence Rhode Island, USA

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

EMC of SPE Cables, Connectors and Assemblies

Overview

- Coupling Attenuation at Low Frequencies, LFCA
- Unbalance Attenuation resp. Mode Conversion
- System Verification
- Normalization
- Measurements
 - SPE cables
 - SPE connectors
- Outlook & Discussion

Abbreviations:

SPE = Single Pair Ethernet, CA = Coupling Attenuation, LFCA = Low Frequency Coupling Attenuation

The balanced pair is fed with a 100 Ohm signal by two 50 Ohm generators with 180° phase shift (virtual balun). Energy couples from the "differential mode" into the "common mode" (mode conversion) and then from the "common mode" into the measuring tube (the outer circuit).

The short circuit at the near end causes a total reflection and the complete energy which coupled into the outer circuit is travelling to the receiver.

According to IEC 62153-4-9, Coupling attenuation can be measured only from 30 MHz upwards.

With the extension of IEC 62153-4-9Amd1 the Low Frequency Coupling Attenuation, LFCA can be measured now from 100 kHz upwards. – Proposed test length is 3 meter.

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

3

4

The "Unbalance Attenuation" of a pair describes as logarithmic ratio, how much power couples from the differential mode to the common mode and vice versa. It is the logarithmic ratio of the input power in the differential mode P_{com} : $a_U = 10 \cdot log(P_{diff}/P_{com})$

An estimation of the system mode conversion can be done by measuring the Scd11 parameter of a TP connecting unit with open loop.

The mode conversion of the test system at low frequencies is about -80 dB and rises to about -40 dB at high frequencies.

of the test objects and can therefore falsify the test t results.

A tolerance of 0.1% of the terminating resistors used is considered sufficient

6

Normalization of CA/LFCA of an SPE Cable

In order to compare triaxial measurements of the coupling attenuation with measurements using absorbing clamps, an arbitrary normalized value of $Z_{\rm S} = 150 \ \Omega$ was introduced in the standards.

wcs

8

This results in the coupling attenuation $a_{\rm C}$ to:

$$a_{C} = 20 \log_{10} \left| \frac{U_{diff}}{U_{2,max}} \right| + 10 \log_{10} \left| \frac{ZZ_{S}}{Z_{diff}} \right|$$

with $Z_{\rm S} = 150 \ \Omega$ and $Z_{\rm diff} = 100 \ \Omega$ the correction value results in 4,8 dB. However, instead of the voltage ratio $U_{\rm diff}/U_{2,\rm max}$ network analyzer give S-Parameter as result.

As the term $U_{diff}/U_{2,max}$ is often incorectly interpreted as S-Parameter Ssd21, IEC TC 46/WG5 proposes the following new expression:

 $a_{C} = -20log_{10}|S_{sd21}| + 10log_{10}\left|\frac{Z_{diff}}{Z_{0}}\right| + 10log_{10}\left|\frac{2Z_{S}}{Z_{diff}}\right| \rightarrow a_{C} = -20log_{10}|S_{sd21}| + 10log_{10}\left|\frac{2Z_{S}}{Z_{0}}\right|$ with $Z_{S} = 150 \ \Omega$ and $Z_{0} = 50 \ \Omega$ the correction value results in 7,8 dB.

Test results in this presentation are raw values without correction.

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

When measuring CA/LFCA on SPE connectors or cable assemblies, appropriate test adapters are required. Test adapters can be machine-made or self-made by using a connectorized SPE cable.

the tube-in-tube can be connected to the feeding cable to measure both, the confection of connector and cable and the connector itself (upper graph)

another option is to connect the tube-in-tube directly to the test adapter

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

DUT

DUT

test adapter

screening cap

balanced/unbal.

receiver

test adapter

load

screening cap

receiver

TP-connecting unit

TP-connecting unit

generator, 180° phase shift

generator, 180° phase shift

generator

tube-in-tube

Assembly with Mated Connector Pair generator DUT balanced/ unbalanced load FP-connecting unit generator, 180° phase shift tube CoMeT 40 COMPARENT COM

SPE assembly with mated connector pair in the middle of the tube

If the assembly is longer than the measuring tube, the assembly can be split in the middle and then coupled together.

The measurement is then analogous to the measurement of SPE cables

recommended test length: 3 m, (tbd further)

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

Test Results of different SPE-Cables

SPE connector under test

11

Unbalance attenuation, screening attenuation & coupling attenuation of two different SPE cables with foil and braid as outer screen.

Coupling attenuation is the result of the interaction of unbalance attenuation (TCL) of the pair and the screening attenuation of the screen.

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

LFCA/CA of Unscreened SPE Cables

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

14

13

Conclusion & Outlook

- The unbalance attenuation a_U of a balanced cable describes in log. representation, how much energy couples from the differential mode into the common mode (or vice versa).
- With the extension of IEC 62153-4-9Amd1 the low Frequency Coupling Attenuation LFCA can be measured now from 100 kHz upwards.
- The corresponding extension of IEC 62153-4-7 for connectors is in preparation at IEC TC 46/WG 5.
- Measurements of LFCA/CA of SPE connectors deviate only slightly from the values of the SPE cables. In the range up to 10 MHz they are below -100 dB and reach a value of about -70 dB at 1250 MHz,
- For verification of the test set-up, Scd11 should be measured on the TP-connecting unit with open loop. At low frequencies, a tolerance of 0,1 % for matching resistors is sufficient.
- The required test length should be discussed as well as the question, whether a normalized value of $Z_{\rm S} = 150 \ \Omega$ should be introduced for LFCA measurements.
- For the revision of IEC 62153-4-7Ed3 by IEC TC 46/WG5, simulation and further measurements of CA/LFCA of SPE connectors and assemblies by different test labs is needed.
- Standards and limits for SPE cables and connectors are specified by IEC SC 46C and IEC SC 48B.
- There are no international standards and limits for SPE assemblies available yet. This task could be addressed to IEC TC 46/WG 9.

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

www.bda-c.com bernhard.mund@bda-c.com

WCS

15

16

IEC Standards for SPE Cables & Connectors

IEC 61156-11 – Horizontal floor wiring - Sectional specification up to 1250 MHz, (46C/1219/CDV) **IEC 61156-12** - Work area wiring - Sectional specification up to 600 MHz, (pub. 2021-01-14) **IEC 61156-13** – (Horizontal floor wiring - Sectional specification up to 20 MHz, (46C/1219/CDV)

Symmetrical SPE-connectors according to IEC SC 48B:

IEC 63171 – Basic standard with all specifications and test sequences (Edition 1 published) IEC 63171-1 – CommScope SPE connector based on LC interlock for M1I1C1E1 applications IEC 63171-2 – SPE connectors from Reichle & De-Massari for M1I1C1E1 applications IEC 63171-3 – SPE connector from Siemon based on a pair of the well-known Tera connector for M1I1C1E1 applications (withdrawn)

EC 63171-4 – SPE connectors from BKS for M1I1C1E1 applications

IEC 63171-5 – SPE connectors from Phoenix Contact based on IEC 63171-2 mating face for M2I2C2E2 and M3I3C3E3 applications

IEC 63171-6 (previously IEC 61076-3-125) - SPE connectors from HARTING and TE Connectivity for M1I1C1E1, M2I2C2E2 and M3I3C3E3 applications (source: Harting application note)

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

Literature & Standards

- [1] Thomas Hähner, Bernhard Mund: Test methods for screening and balance of communications cables; Proceedings of EMC Zurich, 1999, pp. 533-538
- [2] Lauri Halme & Bernhard Mund: EMC of Cables, Connectors and Components with Triaxial Test set-up, IWCS, 62th International Wire & Cable Symposium, Charlotte, Nov. 2013
- [3] B. Mund & C. Pfeiler: "Balunless measurement of coupling attenuation of screened balanced cables up to 2 GHz", Proceedings of the 64th IWCS Conference, Atlanta, US, October 2015
- [4] T. Hähner, B. Mund, & T. Schmid, History and recent trends of Triaxial test procedure, Proceedings of the 67th IWCS Conference, Providence, RI, USA, October 2018
- [5] T. Hähner, B. Mund, T. Schmid: Screening effectiveness of unscreened balanced pairs, EMC Barcelona 2019
- [6] T. Hähner, C. Pfeiler, B. Mund & T. Schmid: EMC Parameter of single pair Ethernet cables, Wire & Cable Technology International/May 2022
- [11] IEC TR 62153-4-1 Introduction to electromagnetic (EMC) screening measurements
- [12] IEC 62153-4-7Ed3 Test method for measuring of transfer impedance Z_T and screening attenuation a_S or coupling attenuation a_C of connectors and assemblies up to and above 3 GHz Triaxial tube in tube method
- [13] IEC 62153-4-9Ed2 Coupling attenuation of screened balanced cables, triaxial method
- [14] IEC 61156-13: Symmetrical single pair cables with transmission characteristics up to 20 MHz Horizontal floor wiring Sectional specification
- [15] EN 50289-1-9 Electrical test procedures Unbalance attenuation

IWCS 2022 Cable & Connectivity Industry Forum in Providence RI, USA, 10th to 13th October 2022 Ralf Damm, Bernhard Mund, bda connectivity GmbH, Asslar, Germany, ralf.damm@bda-c.com, bernhard.mund@bda-c.com, www.bda-c.com

18

17

